International Workshop: 2nd Mechanisms and modelling of waste/cement interactions

Modelling of Chemical Alteration of Cement Materials in Radioactive Waste Repository Environment

Daisuke Sugiyama, Isao Kurashige

Central Research Institute of Electric Power Industry (CRIEPI), Japan

14 October 2008, Le Croisic

Cementitious materials in radwaste repository

Contents

- 1. Observation of alteration of OPC monolith (Lab. Experimental)
 - Leaching/precipitation of components in a tank-leaching experiment
 - Effect of surface precipitates (CaCO₃) on alteration
- 2. Development of a reactive transport computational code (CCT-P)
 - Thermodynamic incongruent dissolution model of C-S-H
 - One-dimensional advection/dispersion/diffusion equation
 - Evolution of the hydraulic properties of the cement solid matrix due to the leaching and precipitation of components
 - Description of precipitation of secondary less-soluble phase acting as a diffusion barrier
- 3. Preliminary calculation of the evolution of the cementitious repository system
- 4. Summary and conclusions

OPC monolith alteration experiments

A tank-leaching experiment

OPC hydrate monolith:

- w/c=0.35, cured in OPC-equilibrated water for 91 days at 50 °C
- 20 x 20 x 70mm
- Only one of the faces of monolith was exposed to the aqueous solution Solution:
 - Deionised water
 - NaHCO₃ solution (6e-5, 6e-4, 6e-3 M)
- The solution and solid samples were separated and the monolith samples were recontacted with fresh deionised water or NaHCO₃ solution after 1, 5, 9, 13, 17, 21, 26, 30, 34, 39, 43, 47 and 52 weeks.
- All experiments were carried out in an nitrogenfilled glovebox.

Results(1): Calcium leaching

In Deionised water :

The dissolution of Ca(OH)₂ dominated the leaching of calcium in the early stage, then the incongruent dissolution of C-S-H gel in the altered surface region dominated the calcium leaching.

In NaHCO₃ solution :

The leaching of calcium was inhibited, significantly at the NaHCO₃ concentrations of 6e-4 and 6e-3 M.

Results(2): Calcium concentration in solid

In 6e-4 and 6e-3 M sodium bicarbonate solutions, little calcium was leached and a layer of calcite precipitation formed.

CCT-P : A coupling transport and chemical equilibrium calculation code

RCRIEPI

[7]

The evolution of the hydraulic properties of the solid

In CCT-P, the diffusion coefficient in the altered region of the solid matrix can be described as a function of porosity;

$$D(t) = \left(D(0) \cdot \frac{\phi(t)}{\phi(0)}\right)^n \qquad (n = 2 \text{ in this study})$$

The porosity of the solid matrix increases or decreases as the component minerals are dissolved and leached or precipitated, respectively;

$$\phi(t) = 1 - (1 - \phi(0)) \cdot \frac{V_{solid}(t)}{V_{solid}(0)}$$

$$V_{solid}(t) = \sum_{i:solid} CS_i(t) \cdot v_{mol_i} + V_{solid,static}$$

 V_{solid} : volume of solid phase,

CS: molarity of component mineral,

v_{mol}: molar volume of component mineral

 $v_{mol Ca(OH)2} = 0.0331 \text{ dm}^3 \text{ mol}^{-1},$ $v_{mol SiO2} = 0.0273 \text{ dm}^3 \text{ mol}^{-1},$ $v_{mol CaCO3} = 0.0369 \text{ dm}^3 \text{ mol}^{-1},$

V_{solid,static}: volume of insoluble residual solid phase.

A hypothetical reaction layer model

At the boundaries of the regions, the advection/dispersion/diffusion equations in adjacent regions are connected as follows:

$$-D_{e}(x,t)_{upper} \cdot \frac{\partial C(x,t)}{\partial x}\Big|_{upper} + V_{d_{upper}} \cdot C(x,t)_{boundary} = -D_{e}(x,t)_{lower} \cdot \frac{\partial C(x,t)}{\partial x}\Big|_{lower} + V_{d_{lower}} \cdot C(x,t)_{boundary},$$

A hypothetical reaction layer model is introduced when a less-soluble or insoluble phase is precipitated:

KCRIEPI

$$-D_{e}(x,t)_{cement} \cdot \frac{\partial C(x,t)}{\partial x}\Big|_{cement} = \left(\frac{\phi(t)}{\phi(0)}\right)_{surface} \cdot \left\{-D_{e}(x,t)_{HRL} \cdot \frac{\partial C(x,t)}{\partial x}\Big|_{HRL}\right\}$$
Hypothetical reaction layer
Cement solid
$$(NaHCO_{3})$$
HCO₃·
$$CaCO_{3}$$
CaCO₃
Porosity of the solid matrix in the near surface region decreases
$$Ca^{2+} \leftarrow Ca^{2+}$$

Incongruent C-S-H dissolution/precipitation model

- C-S-H is described as a binary nonideal solid solution of Ca(OH)₂ and SiO₂.
- The notable features of the model are its good continuity and simplicity, so that the model predicts well the equilibria of the incongruent precipitation/dissolution of cementitious materials accompanying the change of Ca/Si ratio by iterative numerical calculations.

$$\log K_{s} = \frac{1}{1+y} \cdot \log K_{s0} - \frac{1}{1+y} \cdot \log \frac{1}{1+y} + \frac{y}{(1+y)^{2}} \cdot [A_{s0} + A_{s1} (\frac{1-y}{1+y}) + A_{s2} (\frac{1-y}{1+y})^{2}]$$

$$\log K_{c} = \frac{y}{1+y} \cdot \log K_{c0} - \frac{y}{1+y} \cdot \log \frac{y}{1+y} + \frac{y}{(1+y)^{2}} \cdot [A_{c0} + A_{c1} (\frac{1-y}{1+y}) + A_{c2} (\frac{1-y}{1+y})^{2}]$$

(y = Ca/Si of C-S-H)

End member		SiO ₂		Ca(OH) ₂			
$A_{ m ij}$	A _{s0} A _{s1}		A_{s2}	A _{c0}	A _{c1}	A_{c2}	
Ca/Si ≤ 0.833	-18.908	57.821	-58.779	36.902	-37.015	163.21	
Ca/Si > 0.833	-18.933	49.633	24.582	36.923 -7.8143 -50.323			
at Ca/Si ≤ 0.400 SiO ₂ : logK _s = logK _{s0} - log(1+y) logK _{s0} = -2.639							
at $1.686 \le Ca/Si$ SiO ₂ : logK = -7.835 logK ₂₀ = 22.71							

 $Ca(OH)_2$: $logK_c = 22.71$ (= log K_{c0})

8--cu (JNC-TDB)

Refs: D. Sugiyama and T. Fujita, Cem Concr Res 36 (2006) 227-237. JAEA and FEPC, JAEA-Review 2007-010, FEPC TRU-TR2-2007-01, March 2007. [10]

Modelling of the OPC experiment

Calculated mineral composition in OPC hydrate [mol/kg]

Ettringite	Ca(OH) ₂	C-S-H gel	NaOH	КОН	
		(Ca/Si = 1.686)			
0.31	2.5	2.7	0.052	0.064	

 $D_e(0) = 7.8e-12 \text{ [m}^2/\text{s]}$ within the initial solid matrix

Calculation parameters for OPC modelling

Solution		Deionised	6×10 ⁻⁵ mol	6×10 ⁻⁴ mol	6×10 ⁻³ mol
		water	dm ⁻³ NaHCO ₃	dm ⁻³ NaHCO ₃	dm ⁻³ NaHCO ₃
Hypothetical	Thickness of	—	0.6	0.6	0.6
reaction	region [mm]				
layer	Number of grid	—	3	3	3
	layers				
	Thickness of each	—	0.2	0.2	0.2
	grid layer [mm]		10	10	10
	Initial D_e^* [m ² s ⁻¹]	_	8.0×10 ⁻¹⁰	8.0×10 ⁻¹⁰	8.0×10 ⁻¹⁰
	Initial porosity		1	1	1
Vicinity of	Thickness of	2.7	2.7	0.4	0.4
the surface	region [mm]				
of OPC	Number of grid	40	40	40	40
monolith	layers				
	Thickness of each	0.0675	0.0675	0.01	0.01
	grid layer [mm]				
	Initial D_e [m ² s ⁻¹]	$7.8 imes 10^{-12}$	7.8×10^{-12}	7.8×10^{-12}	7.8×10^{-12}
	Initial porosity	0.138	0.138	0.138	0.138
Matrix of	Thickness of	2.3	2.3	4.6	4.6
OPC	region [mm]				
monolith	Number of grid	5	5	5	5
	layers				
	Thickness of each	0.460	0.460	0.92	0.92
	grid layer [mm]				
	Initial D_e [m ² s ⁻¹]	7.8×10^{-12}	$7.8 imes 10^{-12}$	$7.8 imes 10^{-12}$	$7.8 imes 10^{-12}$
	Initial porosity	0.138	0.138	0.138	0.138

Modelling Results(1): Calcium leaching

The effective diffusion coefficient within the initial solid matrix was estimated by a series of sensitivity analyses to fit the measured amount of leached calcium in deionised water.

 $D_e(0) = 7.8e-12 \text{ [m^2/s]}$

The modelling calculations very accurately quantitatively predicted the experimental results for the leaching of calcium.

Modelling Results(2): Calcium in solid

Distance from surface [m]

The modelling calculations quantitatively predicted the experimental results.

Modelling Results(3): Porosity in solid

In deionised water:

The porosity in the altered region (<1.8 mm from the surface) increased.

In NaHCO₃ solution :

The porosity decreased at the surface in 6e-5 M NaHCO₃, and a reduction of the porosity to ~ 0 was predicted for 6e-4 and 6e-3 M NaHCO₃ solutions.

Preliminary calculation of the evolution of the cementitious repository system

- Groundwater in the near-field of the repository contains various chemical species which may precipitate secondary minerals in the cementitious materials.
- Calcite precipitation and the effect of clogging on the long-term alteration of the cementitious repository system is preliminarily discussed (with and without the hypothetical reaction layer).

Calculation parameters for Cementitious repository modelling (1)

Mineral composition of cement materials (OPC):

[mol/kg]

Mineral	Ettringite Ca(OH) ₂		C-S-H gel (Ca/Si = 1.686)	NaOH	КОН
Mortar	0.081	0.97	0.91	0.018	0.021
Concrete	0.047	0.56	0.53	0.010	0.012

Composition of bentonite material:

	Ion-exchange reaction	[meq/100g]
Na- montmorillonite	-	51.4
Ca- montmorillonite	$2ZNa-Z_{2}Ca, \log K_{G\&T} = 0.69$	7.4
K- montmorillonite	ZNa-ZK, $\log K_{G\&T} = 0.42$	0.6
Mg- montmorillonite	$2ZNa-Z_2Mg, \log K_{G\&T} = 0.67$	0.7

Calculation parameters for Cementitious repository modelling (2)

Colution composition.

	1.	Concentration [mol/L]
	Precipitated groundwater (FRHP)	Bentonite pore solution
Na ⁺	3.6 E-3	2.8 E-2
Ca ²⁺	1.1 E-4	5.3 E-5
\mathbf{K}^+	6.2 E-5	1.2 E-4
${ m Mg^{2+}}$	5.0 E-5	4.2 E-6
C (HCO ₃ ⁻ and CO ₃ ²⁻)	3.5 E-3	1.1 E-4
SO ₄ ²⁻	1.1 E-4	1.6 E-2
Cl	1.5 E-5	1.5 E-5

The parameters of the physical properties of the barrier materials and the composition of groundwater were extracted from the literatures:

JNC, H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 3, JNC TN1410 2000-004, April 2000.

JAEA and FEPC, The Federation of Electric Power Companies of Japan, Second Progress Report on Research and Development for TRU Waste Disposal in Japan, JAEA-Review 2007-010, FEPC TRU-TR2-2007-01, March 2007.

Calculation parameters for Cementitious repository modelling (3)

Model		With the hypothetical reaction layer model				Without the hypothetical reaction layer model					
Region		Thickness	Number	Thickness	Initial D_e	Initial	Thickness of	Number	Thickness	Initial D _e	Initial
		of region	of grid	of each grid	$[m^2 s^{-1}]$	porosity	region [mm]	of grid	of each grid	$[m^2 s^{-1}]$	porosity
		[mm]	layers	layer [mm]				layers	layer [mm]		
Rock		3000	16	187.5	8.0×10^{-10}	0.5	3000	16	187.5	8.0×10^{-10}	0.5
Concrete	Hypothetical	6	3	2	8.0 × 10 ⁻¹⁰	1.0	-	-	-	-	-
	reaction layer										
	Vicinity of the	1	100	0.01	4.5×10^{-12}	0.13	-	-	-	4.5×10^{-12}	0.13
	solid surface										
	Bulk matrix of	998	100	9.98			1000	25	40		
	solid										
	Vicinity of the	1	100	0.01			-	-	-		
	solid surface										
	Hypothetical	6	3	2	2.8×10^{-10}	1.0	-	-	-	-	-
	reaction layer										
Bentonite		1000	16	62.5	2.8×10^{-10}	0.415	1000	16	62.5	2.8×10^{-10}	0.415
Mortar	Hypothetical	6	3	2	2.8×10^{-10}	1.0	-	-	-	-	-
	reaction layer										
	Vicinity of the	1	100	0.01	1.4 × 10 ⁻¹¹	0.19	-	-	-	1.4×10^{-11}	0.19
	solid surface										
	Bulk matrix of	300	30	10			1500	150	10		
	solid	5699	10	570			4500	10	450	1	

Modelling Results(1): Calcium leaching

The leaching of calcium was predicted to be significantly inhibited by the calcite precipitate layer in the case with the hypothetical reaction layer.

Modelling Results(2): Bentonite alteration

The alteration of the bentonite buffer was suggested to be reduced if the calcite layer acted as a diffusion barrier at the interface between the cement and bentonite.

Summary and Conclusions

- A reactive transport computational code CCT-P, in which a geochemical model including the thermodynamic incongruent dissolution model of C-S-H is coupled with the advection-diffusion/dispersion equation, was developed.
- The code can consider the evolution of the hydraulic properties of the solid cement matrix due to the leaching and precipitation of components and the clogging effect by insoluble secondary phase precipitation that may inhibit the alteration of cement materials.
- A preliminary modelling calculation predicted that the evolution of the cementitious repository system would be significantly reduced under certain groundwater conditions by insoluble secondary minerals being precipitated on the cement materials.

